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Abstract—A circular tube cooled by constant turbulent flow of water was heated stepwise with time.
Variation of heat-transfer coefficient was obtained. When the tube was heated prior to the step increase of
heat input, a maximum appeared in the variation of heat-transfer coefficient. Reason for the maximum is
discussed. Numerical analysis is made for the same configuration as that of the experiment. The numerical
results agree well with the experimental ones. An analytical expression for the variation of heat-transfer
coefficient is obtained. Time required for the heat-transfer coefficient to reach steady state is studied.

NOMENCLATURE

a, thermal diffusivity [m?/s];

b, constant in equation (14);

¢ specific heat [J/kg K];

D,  inner diameter of tube [m];

d,,  thickness of tube wall {m];

g, gravity acceleration [m/s*];

g.  conversion factor [kg m/Ns%];

H, wall heat capacity per unit heat-transfer
area [J/m? K],

Ky, non-dimensional wall temperature increase
rate, equation (1);

k, correction factor, equations (19), (20);

Nu,  Nusselt number = aD/A;

P,  pressure [N/m?};

Pr,  Prandtl number = v/a;

0 =4J96.1;

gg.  heat generation rate per unit heat-transfer
area [W/m?];

ge»  net heat flux to fluid [W/m?];

Re, Reynolds number,= iD/v;

r, radius [m];

T, temperature [K];

T,  mean temperature [K];

t, time [s];

u, velocity [m/s];

i, mean velocity [m/s];

w*,  friction velocity, ={g.t/p)'"* [m/s];

X, axial distance [m];

¥ distance from wall [m];

yro =ty

Z, non-dimensional time, equation (15).

Greek symbols

a, heat-transfer coefficient [W/m? K7;

8, non-dimensional wall heat capacity,
equation (16);

ey,  thermal eddy diffusivity [m?/s];

£y,  momentum eddy diffusivity [m?/s];
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®’ = wf'l Tw,l >

A thermal conductivity [W/m K];

v, kinematic viscosity of fluid [m?/s];

I density [kg/m*];

1, wall shearing stress [N/m?2].
Subscripts

f fluid;

h, heating wall;

in, inlet;

st, steady state;

tran, transient state;

w, heat-transfer wall surface:

0, initial state;

1, final state.

1. INTRODUCTION

TRANSIENT convective heat transfer is important in
dynamic behaviour of a nuclear reactor or machinery,
Inmost dynamicanalyses at present, however, the heat-
transfer coefficient is assumed constant during the
transient; that is, the quasi-static assumption is made.
The purpose of the present study is to examine
transient variation of the heat-transfer coefficient
analytically and experimentally.

Soliman [1] made an experiment of transient heat
transfer for a turbulent flow over a flat plate with time
dependent heat source. Koshkin et al. [2] made an
experiment for a turbulent air flow in a circular tube.
The heat input and/or air flow rate were varied. In
their analysis, the heat-transfer coefficient at a certain
moment was postulated to be determined by the first_
time derivatives of the wall temperature and the flow
rate. For a step increase of heat input at a constant flow
rate, the critical parameter derived was

a7,

w

DZ
Ot [T Tph—(Tu=Tpol-a;

=

(1)
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Their experimental data were correlated with the
parameter by the following formula.

1t
~= o112

[exp(191 x 107 2K —2.43x 107*K%)~1]. (2)

st

The present author [ 3] made a numerical analysis of
the transient heat transfer for a turbulent flow in an
annulus. He obtained also an analytical solution for
heat-transfer coefficient by solving a simplified energy
equation for turbulent flow.

In the present paper, an experiment is described in
which a circular tube cooled by water was heated
stepwise with time. The flow is turbulent and steady.
The experimental results are compared with the
numerical results and with the analytical solution
obtained in [3].

2. EXPERIMENT

2.1. Apparatus and methods

Figure 1 shows the experimental apparatus. A
stainless steel tube cooled by water was installed
horizontally. Two tubes were tested; they had different
diameter and wall thicknesses as shown in Fig. 1. Both
tubes were 2 m long. A heated section was 30 D located
near the exit of the test section. It was heated by
electric current. The 23 D of the heated section was
devoted to a thermally developing section. A tempera-
ture measuring section was 5D located in the im-
mediate down stream of the thermally developing
section.

The upstream of the heated section acted as a
hydrodynamically developing region. Its length was
32 D in the test section A and 77 D in B.

Referring to the analysis by Sparrow et al. [4], the
length at which the local heat-transfer coefficient
approaches to 5% of its fully developed value is about
5 D or less. Thus, the temperature measuring section in
the present experiment lay in the thermally developed
region.

Variation of mean wall temperature of the measur-
ing section T, was obtained from an increment of the
electric resistance of the tube wall. The axial tempera-
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ture rise of the measuring section was less than 19, of
the difference between the wall temperature and the
fluid mean temperature in the steady state. In the
transient state, the axial temperature rise was smalier
than that in the steady state in case of the uniform axial
heat input. Thus, the axial temperature distribution
was neglected in the measuring section.

A resistance double bridge shown in Fig. 1 was
devised to measure the resistance change of the test
tube. A shunt was so designed that its resistance
change was less than 19 of the resistance change of the
tube during the experiment. The differential voltage
AV was generated by increase of the tube resistance
due to temperature rise. The differential voltage was
recorded by an oscillograph, and then the tube wall
temperature was obtained from the record.

The temperature coefficient of the resistance was
measured prior to the experiment. The variation of the
resistance was found linear in the range of 0-90°C:

R(T) {1 +1.18 x 107 3T (Test section A)

R(0) 1+1.16 x 107 3T (Test section B),

where T is the temperature in °C and R(T) and R(0)
are the resistances at T°C and 0°C, respectively.

Heat generation rate per unit heat-transfer area g
was obtained from the electric current and voltage
drop across the measuring section. The net heat flux
from the tube wall to the fluid ¢, was calculated from
the heat balance relation:

where H is the wall heat capacity per unit heat-transfer
area.

The surface temperature T, was obtained from the
calculation of the radial temperature distribution in
the tube wall. The transient conduction equation in the
tube wall was solved numerically using the heat
generation rate g, and the surface heat flux g,

The heat-transfer coefficient o is defined as

x = qn/(Tw_ Tf)’ (5)

where T, is the mixed mean fluid temperature. It was
calculated with the assumption that g, was uniform

o -2m ]
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F1G.1. Experimental apparatus.
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axially. This assumption holds strictly in the steady
state and approximately in the transient state. As
T. » Ty in both steady and transient states, a slight
error in T; did not affect a so much.

The test tube was installed horizontally in the air
without any thermal insulation over its outer surface.
The heat lost from the outer surface was estimated,
referring to Hellums—Churchill’s [5] and Gebhart’s
[6] analyses for the transient natural convection. The
heat lost was found less than 1% of the heat transferred
to the water in both steady and transient states.

The heat generation rate was increased stepwise at ¢
= (). Voltage applied was so adjusted that the tempera-
ture difference between wall and fluid became roughly
10 K in the final steady state. The heating current was
about 200-400 A for the test section A and 150-300 A
for the test section B. In the experiment, the power
input qg,; decreased slightly with time owing to in-
crease of the internal resistance of batteries. The initial
heat input gg,0 was zero or not zero. The effect of the
initial heat input on the transient heat transfer was
studied.

2.2, Experimental results

The steady-state heat-transfer coefficient obtained
from the experiment agreed well with the correlation
for a circular tube in the steady state: Nu = 0.023 Re®®
Pro4,

Some results of the transient experiments are shown
in Fig. 2 together with numerical and quasi-static
solutions. Two examples for different Reynolds num-
bers are compared in the figure. The numerical and
quasi-static solutions are obtained for the same
Reynolds number as that of the experiment.

The heat-transfer coefficient decreases with time and
reaches the steady-state value asymptotically. The
time required for the heat-transfer coefficient to reach
the steady state becomes small when the Reynolds
number is large.
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Fic. 2. Experimental results compared with numerical and
quasi-static solutions.
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The quasi-static solution in Fig. 2 is the solution
with the quasi-static assumption; that is, the heat-
transfer coefficient is assumed equal to its steady state
value. The difference between the quasi-static solution
and the experimental result increases with decreasing
Reynolds number.

The numerical solution and the conduction solution
llustrated in Fig. 2 will be explained in the following
chapter.

3. ANALYSIS

3.1. Numerical analysis

The same problem as the experiment is analysed
numerically. Assumptions are as follows: (1) the turbu-
lent flow is fully developed and does not change with
time, (2) physical properties are independent of the
temperature, (3) the outer surface of the tube is
insulated, (4) the turbulent eddy diffusivities, &,, and g5,
do not change with time.

The last assumption will be examined in some detail.
Because the flow is steady and its physical properties
are assumed independent of the temperature, the
momentum eddy diffusivity ¢, is constant. The eddy
diffusivity ratio ey/eyy may change in the transient
state. However, an order of time of this change is that
of the heat exchange between turbulent eddies, and is
much smaller than that of the wall temperature
variation. Thus, the thermal eddy diffusivity can also
be assumed unchanging with time.

The momentum equation for the fluid is

g. 0P 120 Gt )rau ©)
pfﬁx_r(?r My or{
and the energy equation is
oT, 0T, 190 Ty
it Rt it 7
a  “ox ror [(sﬂ—f—a,«)r or | @

where r and x are the co-ordinates in radial and axial
directions, respectively. The heat-conduction equation
in the tube wall is

0T, 1a( 0T, de
at awrﬁr(rar)_*H' ®)
Boundary conditions are T, = T, at the starting
point of the heating section (x = 0); du/dr =0 and
0T/dr = 0 on the tube axis (r = 0); 0T,/0r = 0 on the
outer surface (r =7,); u =0, T, = T, and 1{2T,/0r)
= A, (0T,/0r) on the heat-transfer surface (r = r,). The
initial steady state for g o is first calculated, and then
the transient state.
The momentum eddy diffusivity used is the
Reichardt’s [ 7] correlation multiplied by the damping
factor postulated by Wilson-Medwell [8].

oot o ()]
v v T, .
[1—exp(—y*/A*)]. ©9)

The damping constant A* is so decided that the steady
state heat-transfer coefficient obtained numerically




446

coincides with that obtained experimentally. The value
of A* is found about 40 for Re > 10* and larger for Re
< 104,

The eddy diffusivity ratio o = ¢g/ey is given re-
ferring to Mizushina [9] as follows:

o = 15¢{1—exp(— 1/¢)}
$ = (ew/¥) Pr/[4.13+0.743(exe/v) 12 Pr ],

In the viscous sublayer, ¢y = &, is assumed.
Numerical results are compared with the experi-
mental ones in Fig. 2. The agreement is good.
The conduction solution in Fig. 2 is a numerical
solution of the equation

Ty 1 ¢ 0T,
= [(sy+af)r —?7}
This is derived from equation (7) by neglecting the
convection term u(07;/0x). Equation (12) has the same
form as the thermal conduction equation; so, its
solution is called the conduction solution in the
present paper.

The heat-transfer coefficient by the conduction
solution agrees well with the experimental one except
at large times. The reason why the convection term can
be neglected at small times was discussed in [3].
Briefly, it is because 67,/0x remains zero at small times
if the heat input is initially zero and axially uniform.

(10)
(11)

(12)

3.2. Simplified analytical solution
If the transient variation of heat-transfer coefficient

is known, the variation of wall temperature can be
obtained by solving the one-dimensional energy equa-
tion instead of solving the two-dimensional one,
equation (7). The one-dimensional energy equation
can be written as

- —

zj ? =——a(x, 0)(T,— T)).

ot ox  r,lpcy)y

(13)

If « in equation (13) is assumed to be constant with
time, the quasi-static solution is then obtained.

An approximate solution for the transient variation
of the heat-transfer coefficient was derived in [3], by
solving the conduction equation, equation (12), with
the approximation:

eﬂ+af=af(by+1)". (14)

Here n in equation (14) was assumed 2, and then
equation (12) was solved analytically.

It was found [3] that the transient variation of the
heat-transfer coefficient was determined by two non-
dimensional parameters; i.e. a non-dimensional time

2

-5 (15)
4(Apcy),
and a non-dimensional wall heat capacity
agH
(16)

~ (pcy),

HirosHt KAWAMURA

4 —

Y
o
Y J
» ° Dimm)| Ae Vs
5 i o [ 31.11 3020 0378
3 E ° | a 3]
N e | 16.1 .68
, = o N 3380To4?5 ‘
- 3 ] o |
*A %o
}'“AA Go

a ‘boo
A 06000
YN o | CIS

1 WMA‘AWAXRBQ?%:’"O%“%wm 0 0,4
j

0 5 10 15 20
t s
FIG. 3(a). Variation of heat-transfer coefficient plotted vs real
time in s,
4 3 \ T
>
& ;
3H2 | ‘
o ; D(mm Y Re | 8
& -y | © 31 | 3020  0.378
3 Hg \ | a 31 1 | 5200 0566_
3 |l ‘ [+ 161 | 4870 | 0686
2 <] iei 13380 ] 0ars
2 'l T I
\
‘ |
1 |
1 WM qrmf .- o
0 2.0

FIG. 3(b). Variation of heat-transfer coefficient plotted vs
non-dimensional time Z.

Figure 3(a) is variation of the heat-transfer coef-
ficient with the real time in second for the case of g¢,o
= 0. The variation depends on the Reynolds number,
the tube diameter and wall thickness. The same data
are replotted against the nondimensional time Z in
Fig. 3(b). The variation of the heat-transfer coefficient
is well correlated by Z and slightly depends on B. It is
thus indicated that the non-dimensional time Z is a
critical parameter relating with the variation of heat-
transfer coefficient.

With Z and f, the variation of heat-transfer coef-
ficient is expressed as [3]:

oz, p)

, 17
“ oZ. f) (17)

lran Z B )
where @ and @ are the non-dimensional heat flux and
wall temperature, respectively. Their analytical forms
are given in Table 1.

In substitution of equation (17) into equation (13),
equation.(13) is solved taking the time variation of «
into consideration. This solution will be called the
“simplified solution”. The axial variation of o is
assumed as follows:

a(x’ t) = {a!ran(t), if alran(t) > as'(x)

. (13)
o, (x), if (1) < o (x),

lr an

where o, (x) is the axial distribution of heat-transfer
coefficient in the steady state. It is obtained from the
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Table 1. @ and Q
Z =[Q/p-171°Z

Bx1,B%0
1+(1—B8)? —
= 2(1( ﬂl)iz) \/ + ﬂ(lﬂ Bz —e’zez'erfcﬁ)

———\/ (1—\/;\/Eezerfc\/.z-)

(1_ \/n
2-p

e=uh

(1—e Ze erfc\/Z)—

crf\/Z

p=1

2 - 4 — -
@:erf\/Z+—:\/Ze‘z——_\/Ze‘z(l—\/n\/Zez
Y= Jx

erfe/Z)-(1+Z

—erfﬁ+—f Ze"(l—fﬁe etfcf)

B=0
R R —
@ =erf /Z +7\/Z e 1 —/nJ/Z et erfc /Z)
n

Q=1.

numerical solution in the steady state; or, an appro-
ximate correlation may be used.

The simplified solution is compared with the ex-
perimental one in Fig. 4. The broken line shows the
simplified solution. The simplified solution coincides
with the experimental result better than the quasi-
static solution; but some error still exists. The error in
heat-transfer coefficient by the simplified solution
increases with decrease of 8, and becomes at most 30%,
when § < 0.5.

The error is due to the approximation of equation
(14), not due to the neglection of the convection term in
the energy equation. It has been already found that the
convection term is negligible except at large times (see
Fig. 2).

A correction is attempted empirically to get a better
agreement with the experiment. A correction factor k is

Re =5200, £=0701

o 4 Experimentol
- 2-|E ZO)Sbnpllﬁod
—-== Quasi- s'a'lc

(B =Tt M7 -5 )
o o
> @

ow“m o
-
i

o
n

Fi6. 4. Comparison with simplified solution and experimen-
tal results.

introduced in equation (17) as follows:

Q(Z,B)

Z, —— 19
uZ, B) = o okzZ, kﬁ) (19)
Then, good agreement with the experiment is ob-
tained, if k is given as 1
1+0.6(1—-p/4), 0<p<4
_ (L—p4), 0<p 20)
1, 4< 8.

The correction factor is found empirically for cooling
by water. The simplified solution with this correction is
shown in Fig. 4 by the solid line. Agreement with the
experiment is thus improved.

Equation (19) is not rigorous as far as k # 1. When
Z - o0, however, a given by equation {19) becomes o;
and when Z — 0, equation (19) becomes the correct
form:

o= o, (nZ)"? = 2/n'?-[(Apc,)/t}'2, (1)

if B # 0. Equation (19) is thus the rigorous solution for
both small and large times.

The “simplified solution” or “analytical solution”
hereafter is the solution with the correction.

Figure 5 shows the times required for heat-transfer
coefficient or wall temperature to reach the steady state
for gg o = 0. The steady state time Z, , is defined as the
time for « to decrease to 1.1 o, and Z_, ,, is the time for
(T,,— T;) to increase to 90%, of the steady state value.
Both the steady state times for two different test
sections are well correlated by Z and .
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FIG. 5. Times required for heat-transfer coefficient and wall
temperature to reach steady state.

The steady state time for heat-transfer coefficient
Z,, ,is about Z ~ 1 and slightly dependent on . Since
the heat-transfer coefficient approaches the steady
state asymptotically, it is often sufficient to know only
the order of magnitude of the steady state time. For
such purpose, the time required for heat-transfer coef-
ficient to reach the steady state may be given as
Z~1lor

tyo ~ MApcy)s/ad. (22)

The steady state time for wall temperature Z, ,,
obtained by experiment agrees with that by the quasi-
static solution, when f > 1. It was found [3] that, the
variation of wall temperature is quasi-staticif § > 1.In
this case the transient behaviour of heat-transfer
coefficient has no large effect on the wall temperature.
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WG. 7. Experimental results with a nonzero initial heat input
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When f « 1, however, the experimental Z,, ,, deviates
from the quasi-static solution; itis nearly equalto Z, .
This is because the variation of wall temperature is
mainly determined by the transient variation of heat-

transfer coefficient when f « 1.

4. EFFECT OF INITIAL POWER INPUT

Figure 6 shows the results by experiment for three
different initial heat inputs. When g, # 0, 2 max-
imum appears in the variation of the heat-transfer
coefficient. The maximum decreases with increase of
46,0

The experimental result for g o # O is compared
with the simplified solution in Fig. 7. The maximum in
the heat-transfer coefficient is seen clearly in the figure.

The maximum in heat-transfer coefficient is already
found analytically in [ 3]. The general form of equation
(17) inclusive of gg o ¥ 0is [3]

i () +(96,0/96,1) 11 — Q1))

M = % S0+ Geo/den) [1-O0)]

(23)

At small times, the analytical forms of Q and @ are
expressed as

t—0,H=x0) (24)

01~ 3 YO

T

@(t)~%t (t—0,H % 0). (25)
When g0 =0, « is given by equation (21) and
becomes infinite as t — 0. When g o # 0, however, xis
equal to o, and stays finite.

This is explained physically as follows. When g,
= 0, the temperature is uniform in fluid at ¢t = 0; so,
the heat-transfer coefficient at small times is de-
termined by the transient heat conduction in the fluid.
When ¢¢ o # 0, asteady state temperature distribution
already exists at ¢ = 0. The heat-transfer coefficient is
determined by the temperature distribution; thus «
=g, att -0

Koshkin et al. [2] assumed that the transient o/a,,
was correlated by equation (2) using the non-
dimensional wall temperature increase rate K, given
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by equation (1). The ratio o/, obtained in the present
experiment is plotted vs K in Fig. 8. ‘Equation (2) is
also plotted in Fig. 8 for T,/T; ~ 1. The present
experimental results do not agree with equation (2).

The present results in Fig. 8 show that a/a,, depends
on gg o and cannot be correlated only by K. This fact
contradicts the Koshkin's assumption.

When g o # 0, 0/, is 1 and d7,,/dt is not zero at ¢
= 0. So, the o/a, ~ K curve starts at where o/o,, = 1
and K # 0. As K decreases, the curve has a maximum
and finally reaches the point of /o, = 1 and K, = 0.
The maximum depends on g4 . When gg, = 0, the
curve starts with o/, — co. Thus, the a/e,, — Ky curve
depends on gg q; S0, %/e, cannot be correlated by K
alone.

Koshkin et al. [2] made the experiment with air. In
this case, f becomes so large that the wall temperature
variation is nearly quasi-static [3]. This means that
high accuracy is required for the wall temperature
measurement, to calculate the heat flux from variation
of the wall temperature. Some factors ignored in the
present study may play an important role in Koshkin’s
experiment. Effect of variation of the physical proper-
ties, for example, should be studied further.

5. CONCLUSIONS

(1) The steady state times for heat-transfer coefficient
and for wall temperature can be correlated by the
non-dimensional parameters Z and B for different
tube diameters and wall thicknesses.

(2) Analytical solution of the heat-transfer coefficient
agrees with the experimental one within error of
30%. M the correction factor given by equations
(19) and (20) is introduced, good agreement is then
obtainable for water.

(3) When the initial heat input is not zero, a maximum
appears in variation of the heat transfer coefficient.
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RECHERCHE EXPERIMENTALE ET ANALYTIQUE SUR LE TRANSFERT THERMIQUE
TRANSITOIRE POUR L'ECOULEMENT TURBULENT DANS UN TUBE CIRCULAIRE

Résumé—Un tube circulaire, refroidi par un écoulement turbulent constant d’eau, est réchauffé par
gradins dans le temps. On obtient une variation du coefficient de transfert de la chaleur. Quand le
tube est réchauffé, avant Paugmentation échelonnée du chauffage, un maximum apparait dans la
variation du coefficient. On discute une cause probable de cette apparition du maximum. Une analyse
numérique est faite sur la méme configuration que celle de expérimentation. Ses résultats sont bien
d’accord avec ceux expérimentaux. Une expression analytique pour la variation du coefficient de transfert
est donnée. On étudie le temps nécessaire pour que le coefficient de transfert thermique atteigne la
valeur stationnaire.

EXPERIMENTELLE UND ANALYTISCHE UNTERSUCHUNG DES
INSTATIONAREN WARMEUBERGANGES BEI TURBULENTER STROMUNG
IN EINEM RUNDEN ROHR

Zusammenfassung —Ein von einer turbulenten Wasserstr§mung gekiihites Rohr wird zeitlich stufenweise
erhitzt und die Veriinderung des Wirmeiibergangskoeffizienten wird gemessen. Wenn das Rohr am Anfang
erhitzt wird, ergibt sich ein Maximum in der Verdnderung des Wirmeiibergangskoeffizienten. Der Grund
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fiir das Maximum wird diskutiert. Eine numerische Analyse wird fiir den gleichen Aufbau wie bei dem

Experiment durchgefiihrt. Die numerischen Ergebnisse stimmen gut mit den experimentellen Ergebnissen

liberein. Eine Formel fiir die Verdnderung des Wirmeiibergangskoeffizienten wird angegeben. Die

erforderliche Zeit fiir Erreichen des stationdren Zustandes des Warmetibergangskoeffizienten wird
untersucht.

TEOPETUKO-OKCIIEPMMEHTAJIBHOE MCCJIEDOBAHHUE
HECTALIMOHAPHOI'O TEIIJIOOBMEHA OJis1 TYPBYJIEHTHOI'O TEYEHHA
B KPYTJIOU TPYBE

AnpoTaImMs — AHAHM3HPYETCS IPOLIECC CTYNEHYATOTO BO BPEMEHH HArpesa KpyIsiol TpyOsl, oxmax-
naeMol Typ6yJeHTHBIM NOTOKOM BOABL IlonyuyeHa 3aBHCHMOCTH Ko3dduimeHTa TemoobMeHa oT
pasrolEx (akropos. Ilpe Harpese TpyGbl [0 Hauada CTYIEHYAaTOTO M3MeHeHHMfi Habmopaetcs
MakKCHMyM Ha KpMBOM BPEMEHHOrO H3MeHeHHs ko3dduumenta Termmoobmena. O6cyxiaercs npu-
9YMHA [OABJIEHWA MakcHMyMa. ITpoBONHTCS MMCIEHHBIR aHAIM3 IJIS YCIOBHM, pealH30BaHHBIX B
skcriepaMenTe, YHCeHHbIe Pe3yIbTAaThl XOPOLIO COTTIACYIOTCH ¢ H3MepeHusAMH. [TonyyeHo aHaMuTH-
4ecKoe BBIpakeHue O M3MeHeHus kosdduumenta termnooOmena. [IpuBeneHb! OLEHKM BpeMEHH,
HeOBXOMMOro ANs OOCTHXEHHS YCTAHOBUBIIMXCH 3HaYeHHN KOa(bUIMEHTa TennooGMeHa.



